Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory.

نویسندگان

  • Bala Rathinasabapathi
  • Murugesan Rangasamy
  • Jason Froeba
  • Ronald H Cherry
  • Heather J McAuslane
  • John L Capinera
  • Mrittunjai Srivastava
  • Lena Q Ma
چکیده

Brake fern, Pteris vittata, not only tolerates arsenic but also hyperaccumulates it in the frond. The hypothesis that arsenic hyperaccumulation in this fern could function as a defense against insect herbivory was tested. Fronds from control and arsenic-treated ferns were presented to nymphs of the grasshopper Schistocerca americana. Feeding damage was recorded by visual observation and quantification of the fresh weight of frond left uneaten and number of fecal pellets produced over a 2-d period. Grasshopper weight was determined before and after 5 d of feeding. Grasshoppers consumed significantly greater amounts of the frond tissue, produced more fecal pellets and had increased body weight on control plants compared with grasshoppers fed arsenic-treated ferns. Very little or none of the arsenic-treated ferns were consumed indicating feeding deterrence. In a feeding deterrent experiment with lettuce, sodium arsenite at 1.0 mm deterred grasshoppers from feeding whereas 0.1 mm did not. In a choice experiment, grasshoppers preferred to feed on lettuce dipped in water compared with lettuce dipped in 1.0 mm sodium arsenite. Our results show that arsenic hyperaccumulation in brake fern is an elemental defense against grasshopper herbivory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic complexes in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern).

Pteris vittata (Chinese brake fern), the first reported arsenic (As) hyperaccumulating plant, can be potentially applied in the phytoremediation As-contaminated sites. Understanding the mechanisms of As tolerance and detoxification in this plant is critical to further enhance its capability of As hyperaccumulation. In this study, an unknown As species, other than arsenite (AsIII) or arsenate (A...

متن کامل

Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic.

Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from the environment. This work aims to examine (i) arsenic accumulation in three fern species [Chinese brake fern (Pteris vittata L.), slender brake fern (Pteris ensiformis Burm. f.), and Boston fern (Nephrolepis exaltata L.)], which were ...

متن کامل

Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).

Chinese brake fern (Pteris vittata L.) is a hyperaccumulator of arsenic (As) that grows naturally on soils in the southern United States. It is reasonable to expect that mycorrhizal symbiosis may be involved in As uptake by this fern. This is because arbuscular mycorrhizal (AM) fungi have a well-documented role in increasing plant phosphorus (P) uptake, P and As have similar chemical properties...

متن کامل

Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.).

The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and...

متن کامل

Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography–inductively coupled plasma mass spectroscopy

Ion-pair reverse-phase HPLC–inductively coupled plasma (ICP) MS was employed to determine arsenite [As(III)], dimethyl arsenic acid (DMA), monomethyl arsenic (MMA) and arsenate [As(V)] in Chinese brake fern (Pteris vittata L.). The separation was performed on a reverse-phase C18 column (Haisil 100) by using a mobile phase containing 10 mM hexadecyltrimethyl ammonium bromide (CTAB) as ion-pairin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 175 2  شماره 

صفحات  -

تاریخ انتشار 2007